產(chǎn)品詳情
提高可持續(xù)性
這種對(duì)運(yùn)輸制造自動(dòng)化的依賴也使工廠變得更具可持續(xù)性。機(jī)器人可能需要能量來運(yùn)行,但它們也讓設(shè)施能夠更好地控制它們消耗的能量。這些機(jī)器人系統(tǒng)在工作時(shí)會(huì)生成有關(guān)其效率和能源使用的數(shù)據(jù),指導(dǎo)流程改進(jìn)以程度地減少能源浪費(fèi)。
較新的機(jī)器人甚至可以自動(dòng)調(diào)整其操作以盡可能少地使用能源。軟件機(jī)器人可以更進(jìn)一步,分析工廠數(shù)據(jù),以洞察如何變得更加可持續(xù)。然后,汽車制造商可以盡可能減少對(duì)環(huán)境的影響。
變得更具可持續(xù)性對(duì)于運(yùn)輸行業(yè)至關(guān)重要。平均每輛汽車每年產(chǎn)生超過2 噸的二氧化碳,這為該行業(yè)提供了很大的改進(jìn)空間。該行業(yè)制造方面的這些流程改進(jìn)有助于彌補(bǔ)其碳排放的歷史。
高效物流
當(dāng)人們想到“機(jī)器人”時(shí),可能不會(huì)想到軟件機(jī)器人,但它們是一些最有價(jià)值的機(jī)器人應(yīng)用程序。事實(shí)證明,這些人工智能程序在運(yùn)輸物流領(lǐng)域特別有用。通過將數(shù)據(jù)輸入軟件機(jī)器人,供應(yīng)鏈在過去幾年變得更加高效。
一些人工智能物流程序分析了數(shù)百萬次航運(yùn)交易中超過2.5 億個(gè)數(shù)據(jù)點(diǎn)。借助這些數(shù)據(jù),他們可以深入了解物流公司如何優(yōu)化其負(fù)載、路線和外包以節(jié)省時(shí)間和金錢。類似的系統(tǒng)會(huì)實(shí)時(shí)調(diào)整司機(jī)的導(dǎo)航,以產(chǎn)生最有效的送貨路線。
物理機(jī)器人也有助于提高物流效率。與完全手動(dòng)的過程相比,自動(dòng)化系統(tǒng)可以與人類一起工作,在更短的時(shí)間內(nèi)裝卸卡車。隨著物理和軟件機(jī)器人的改進(jìn),貨運(yùn)將變得越來越高效。
1394-SJT10-C-RL 的技術(shù)規(guī)格
品牌 | 艾倫-布拉德利 |
零件號(hào)/目錄號(hào) | 1394-SJT10-C-RL |
生產(chǎn)線 | 伺服控制器 |
模塊類型 | 系統(tǒng) |
額定功率 | 5 千瓦 |
1394-SJT05-C 由 Allen-Bradley 制造,用作 GMC 標(biāo)準(zhǔn)系統(tǒng)模塊,與多軸運(yùn)動(dòng)控制系統(tǒng)的 1394 產(chǎn)品公告一起使用。該組件具有嵌入式 RS232 / 422 和 DH485 功能以及 AxisLink 和遠(yuǎn)程 I/O 通信端口。
由于配備遠(yuǎn)程 I/O 通信端口,該模塊能夠在 GMC Turbo 和 Standard 系統(tǒng)以及 Allen-Bradley 的 SLC 500 和 PLC 5 控制器平臺(tái)之間進(jìn)行數(shù)據(jù)交換。此外,AxisLink 通信還可專門用于與網(wǎng)絡(luò)中的其他系統(tǒng)模塊直接通信。也可用于設(shè)置網(wǎng)絡(luò)中的主軸。
為系統(tǒng)模塊接線時(shí),請(qǐng)使用 MTW 型銅線,它是一種 75 度的機(jī)床線。攝氏度。使用 12 AWG 電線尺寸(3.3 平方毫米)。最小化噪聲和接地回路,分離反饋并確保系統(tǒng)正確接地,以確保系統(tǒng)平穩(wěn)運(yùn)行。系統(tǒng)模塊設(shè)計(jì)逆變器載波頻率為5000Hz。輸出逆變器開關(guān)輸出載波頻率為 10,000 Hz。這可能會(huì)成為額外的噪聲源,可能會(huì)影響安裝在模塊附近的敏感設(shè)備。
在機(jī)柜內(nèi)布線時(shí),將低壓、通信、控制 I/O 和電機(jī)反饋電纜與電源線和 460 / 380 VAC 電源分開。每個(gè)應(yīng)有不同的入口點(diǎn)。高低壓線90度交叉。不要在同一電纜管理托盤中運(yùn)行低壓和高壓電線。
This reliance on automation in transportation manufacturing also enables factories to become more sustainable. Robots may take energy to operate, but they also let facilities take more control over the power they consume. These robotic systems produce data about their efficiency and energy use as they work, guiding process improvements to minimize energy waste.
Newer robots can even adjust their operations automatically to use as little energy as possible. Software robots can go a step further, analyzing factory data to produce insights into how to become more sustainable. Automakers can then minimize their environmental footprint as much as possible.
Becoming more sustainable is essential for the transportation industry. The average car produces more than 2 tons of carbon dioxide every year, giving the sector much room to improve. These process improvements on the manufacturing side of the industry help it make up for its history of carbon emissions.
Software robots may not be what comes to mind when people think of “robotics,” but they’re some of the most valuable robotics applications. These AI programs have proven particularly helpful in the logistics sector of transportation. By feeding data into software robots, supply chains have become far more efficient in the past few years.
Some AI logistics programs analyze more than 250 million data points across millions of shipping transbs. With this data, they produce insights into how logistics companies can optimize their loads, routes, and outsourcing to save time and money. Similar systems adjust drivers’ navigation in real-time to produce the most efficient delivery routes possible.
Physical robots help improve logistics efficiency, too. Automated systems can work alongside humans to load and unload trucks in far less time than an entirely manual process. As both physical and software robots improve, freight transportation will become increasingly efficient.
Some of the ways robotics improve transportation are less direct. For example, one of the most innovative but less publicized use cases for robots in transport is road maintenance. Researchers have recently developed automated systems that can help detect and repair roads, helping governments improve infrastructure more efficiently.
In 2019, scientists designed a drone that can detect road damage, showing relevant authorities where to target their repair efforts. One U.K.-based company is developing a robot that can detect and fix potholes and cracks, automating the entire repair process. With advancements like this, roadways can become safer, faster.
Employing these robots will improve the perbance of other transportation robotics, too. Self-driving vehicles will have an easier time navigating on roads that are in good condition.
Whether the public realizes it or not, robots have become a critical part of the transportation sector. From manufacturing to logistics to passenger transport, robotics have influenced and continue to influence every aspect of transportation. As these technologies drive further innovation, they will become inseparable from the industry.