產(chǎn)品詳情
電池原位紅外附件
產(chǎn)品詳情
?
電化學(xué)原位紅外光譜分析是紅外分析技術(shù)的一個(gè)重要分支,能夠定性分析電催化(如CO2電還原等)反應(yīng)、各種類型電池(如鋰離子、鋰硫電池等)充放電過(guò)程中電極表面的產(chǎn)物或中間產(chǎn)物隨時(shí)間(電位)不斷變化的趨勢(shì),是研究電化學(xué)反應(yīng)機(jī)理以及電化學(xué)反應(yīng)動(dòng)力學(xué)的重要手段之一。
構(gòu)造原理:
(1)兩電極體系,專為電池體系設(shè)計(jì)。
(2)電化學(xué)反應(yīng)池氣密性良好,可通入反應(yīng)氣體。
(3)金剛石晶體,適用性廣。
?
圖2:基本原理示意圖
?
附件組成
(1)紅外光譜儀主機(jī)適配底板,適配主流紅外光譜儀。
(2)光路系統(tǒng)。
(3)PEEK材質(zhì)氣密性電化學(xué)池。
(4)O型圈密封件。
?
主要特點(diǎn)
(1)優(yōu)化的光路系統(tǒng),光通量大。
(2)電化學(xué)池密封性能好,可通入反應(yīng)氣體。
(3)金剛石晶體光通量大。
(4)獨(dú)特的電極,電解液信號(hào)采集調(diào)節(jié)技術(shù)。
(5)可實(shí)現(xiàn)電化學(xué)紅外質(zhì)譜三聯(lián)用。
(6)金剛石晶體板和電化學(xué)池拆卸方便,可方便在手套箱中組裝電池。
(7)提供現(xiàn)場(chǎng)技術(shù)服務(wù)。
?
主要技術(shù)參數(shù)
1.光譜范圍:250/525-4000 cm-1
2.晶體種類:金剛石晶體
3.電化學(xué)池:PEEK材質(zhì),兩電極體系,氣密性池體,可方便在手套箱中裝卸電池,設(shè)有進(jìn)氣口和出氣口,可實(shí)現(xiàn)各類電池充放電過(guò)程中紅外光譜的采集。
4.溫控電化學(xué)池,溫控范圍:RT-100℃,溫控精度0.1℃。
5.電極與金剛石晶體距離調(diào)節(jié)系統(tǒng),帶刻度微調(diào)功能,重現(xiàn)性好,以實(shí)現(xiàn)觀測(cè)電解液溶劑化或電極表面物種變化。
6.電化學(xué)池可實(shí)現(xiàn)電化學(xué)質(zhì)譜儀與紅外三聯(lián)用,提供多聯(lián)用技術(shù)方案。
7.反射次數(shù):單次反射。
8.反射類型:外反射。
9.光路反射系統(tǒng)適配主流品牌紅外光譜儀,提供光譜儀適配底板,光路系統(tǒng)方便安放或取出光譜儀樣品倉(cāng)。
?
?
?
應(yīng)用案例
?
?
鋰離子電池? Chem. Mater.?2020, 32, 8, 3405–3413
?
鋰離子電池 ACS Energy Lett. 2020, 5, 1022?1031
?
鋅離子電池 Adv. Funct. Mater. 2020, 2003890
?
鋰離子電池 ?Joule 2022, 6, 399–417
?
部分客戶論文發(fā)表清單:
1.?Jianping Xiao*, Bin Zhang*, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to bate.?Nat. Commun.?2020, 11, 3415
2.?Lei Yan, Yonggang Wang*, et al. Chemically Self-Charging Aqueous Zinc-Organic Battery.?J. Am. Chem. Soc.?2021, 143, 15369-15377?
3.?Bingliang Wang, Yongyao Xia*, et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reb.?Energy Environ. Sci.?2020, 13, 2200-2208
4.?Yang Peng*, et al. Breaking Linear Scaling Relationship by Combal and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production.?Angew. Chem. Int. Ed.?2021, 60, 2508-2518?
5.?Zhuo Yu, Yonggang Wang*, et al. Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating.?Adv. Energy Mater.?2020, 10, 2000907
6.?Xinwei Ding, Zhi Yang*, et al. Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries?Adv. Funct. Mater.?2020, 30, 2003354?
7.?Hong Guo*, Xueliang Sun*, et al. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Perbance Li Storage.?ACS Energy Lett.?2020, 5, 1022-1031
8.?Bin Zhang* et al. Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO2?Electroreduction.?ACS Catal.?2019, 9, 10983-10989?
9.?Suya Zhou, Zhi Yang*, et al. Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries?ACS Nano.?2020, 14, 7538–7551
10.?Yongyao Xia*, et al. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior.?Adv. Sci.?2020, 7, 2000196
11.?Lei Wang*, Yonggang Wang, et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-perbance lithium–air batteries.?Energy Storage Materials.?2020, 26, 593-603
12.?Bin Zhang, et al. Unveiling in situ evolved In/In2O3? x heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2?to bate.?Science Bulletin.?2020, 65, 1547-1554
13.?Huani Li, Shubiao Xia*, Hong Guo*, et al. Red Phosphorus Confined in Hierarchical Hollow Surface-Modified Co9S8 for Enhanced Sodium Storage.?Sustainable Energy Fuels.?2020, 4, 2208-2219?
14.?Guanglei Cui*, Liquan Chen, et al. Non-flammable nitrile deep eutectic electrolyte enables high voltage lithium bl batteries.?Chem. Mater.?2020, 32, 3405-3413?
15.?Guanglei Cui*, et al. Investigation on the Cathodic Interfacial Stability of Nitrile Electrolyte and its perbance with High Voltage LiCoO2?Chem. Commun.?2020, 56, 4998-5001?
16.?Zhongbin Zhuang*, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells.?Nat. Commun.?2020, 11, 5651?
17.?Tiancun Liu, Yong Wang*, et al. Organic supramolecular protective layer with rearranged and defensive Li deb for stable and dendrite-free lithium bl anode.?Energy Storage Materials.?2020, 32, 261–271
18.?X. Yin, Y. Wang*, et al. Designing cobalt-based coordination polymers for high-perbance sodium and lithium storage: from controllable synthesis to mechanism detection.?Materials Today Energy.?2020, 17, 100478
19.?Song Chen, Jintao Zhang*, et al. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Perbance Aqueous Zinc-Ion Battery.?Adv. Funct. Mater.?2020, 30, 2003890?
20.?Yanrong Xue, Zhongbin Zhuang*, et al. Sulfate-Functionalized RuFeOx as Highly Efficient Oxygen Evolution Reb Electrocatalyst in Acid.?Adv. Funct. Mater.?2021, 31, 2101405
21.?Hong Guo*, et al. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-perbance Li-S batteries.?Energy Storage Materials.?2021, 40, 139-149
22.?Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping.?SCIENCE CHINA Chemistry.?2021, 64, 1493–1497
23.?Yang Peng*, et al. Geometric Modulation of Local CO Flux in Ag@Cu2O Nanoreactors for Steering the CO2RR pathway toward High-Efficacy Methane Production.?Adv. Mater.?2021, 33, 2101741
24.?Yonggang Wang*, et al. Molecular Tailoring of n/p-type Phenothiazine Organic Scaffold for Zinc Batteries.?Angew. Chem. Int. Ed.?2021, 60, 20826-20832?
25.?Hongliang Jiang*, Chunzhong Li*, et al. Dynamically Formed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO2?Electroreduction.?J. Am. Chem. Soc. 2022, 144, 6613–6622
26.?Yang Peng*, et al. Au-activated N motifs in non-coherent cupric porphyrin bl organic frameworks for promoting and stabilizing ethylene production.?Nat. Commun.?2022, 13, 63?
27.?Jie Zeng*, et al. Copper-catalysed exclusive CO2?to pure bic acid conversion via single-atom alloying.?Nature Nanotechnology.?2021, 16, 1386-1393?
28.?Min-Rui Gao*, et al. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2?Electroreduction.?J. Am. Chem. Soc.?2022, 144, 1, 259-269?
29.?Chen Feng, Shiming Zhou*, Jie Zeng*, et al. Tuning the Electronic and Steric Interb at the Atomic Interface for Enhanced Oxygen Evolution.?J. Am. Chem. Soc.?2022, 144,21,9271-9279?
30.?Rui Lin, Jianhui Wang, et al. Asymmetric donor-acceptor moleculeregulated core-shell-solvation electrolyte for high-voltage aqueous batteries.?Joule?2022, 6, 399–417?
31.?Xiaogang Zhang*, et al. Successive Cationic and Anionic (De)-Intercalation/Incorporation into an Ion-Doped Radical Conducting Polymer.?Batteries & Supercaps?2019, 2, 979-984
32.?Zhongju Wang, Yongzhu Fu*, et al. Biredox‐Ionic Anthraquinone‐Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li‐Organic Batteries.?Adv. Sci.?2022, 9, 2103632?
33.?Jintao Zhang*, et al. Defect evolution of hierarchical SnO2?aggregatesfor boosting CO2?electrocatalytic reduction.?J. Mater. Chem. A?2021, 9, 14741-14751
34.?Fei Ai, Yijun Lu*, et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures.?Nature Energy?2022, 7, 417–426?
35.?Zhejun Li, Yijun Lu*. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes.?Nature Energy?2021, 6, 517–528
36.?Shanshan Lu, Wei Zhou. et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution.?Chem.?2022, 8, 1415-1426.??
37.?Tieliang Li, Yifu Yu, Bin Zhang*, et al. Sulfate-Enabled Nitrate Synthesis from Nitrogen Electrooxidation on Rhodium Electrocatalyst.?Angew. Chem. Int. Ed.?2022, e202204541?
38.?Yanbo Li, Bin Zhang, Yifu Yu*, et al. Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets.?ACS Energy Letters?2022, 7, 1187-1194?
39.?Yanmei Huang, Yifu Yu, Bin Zhang*, et al. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide.?ACS Energy Letters?2022, 7, 284-291
40.?Wenfu Xie, Hao Li, Min Wei*, et al. NiSn Atomic Pair on Integrated Electrode for Synergistic Electrocatalytic CO2?Reduction.?Angew. Chem. Int. Ed.?2021, 60, 7382–7388
41.?Rui Sui, Jiajing Pei, Zhongbin Zhuang*, et al. Engineering Ag?Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO2?Electroreduction.?ACS Appl. Mater. Interfaces?2021, 13, 17736-17744?
42.?Tiliang Li, Yuting Wang, Yifu Yu*, Bin Zhang*, et al. Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate.?ACS Catal.?2021, 11, 14032-14037
43.?Bin Zhang*, et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts.?Science China Chemistry?2020, 63, 1469-1476
44.?Jiangwei Shi, Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping.?Science China Chemistry?2021, 64, 1493-1497?
45.?Jintao Zhang* et al. Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2.?Angew. Chem.Int. Ed.?2022, 61, e202113918
46.?Lang Xu* et al. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO2 Reduction.?Angew. Chem.Int. Ed.?2022, 61, e202201166
47.?Bin Zhang* et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution.?Chem.?2022, 8, 1415-1426
48.?Sheng Dai*,?Minghui Zhua*,?Yifan Han* et al. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction.?Applied Catalysis B: Environmental?2021, 298,
49.?Nan Wang, Yonggang Wang*, et al. Zinc-organic Battery with a Wide Operation-temperature Window from -70 to 150 oC.?Angew. Chem. Int. Ed.?2020,59,14577-14583
50.?Nannan Meng, Yifu Yu, Bin Zhang*, et al. Efficient Electrosynthesis of Syngas with Tunable CO/H2 Ratios over ZnxCd1-xS-Amine Inorganic-Organic Hybrids.?Angew. Chem. Int. Ed.?2019, 58, 18908–18912
?
?